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Abstract. We associate bicomplexes with several integrable models in such a way that conserved
currents are obtained by a simple iterative construction. Gauge transformations and dressings
are discussed in this framework and several examples are presented, including the nonlinear
Schrödinger and sine–Gordon equations, and some discrete models.

1. Introduction

Let D = d + A be the covariant exterior derivative associated with a connection 1-form A.
The integrability condition of the linear equation Dχ = 0 for a vector valued function χ is the
zero-curvature condition F = dA + A ∧ A = 0 since D2χ = F χ . In two dimensions where
A = −U dx − V dt with matrices U and V depending on coordinates x, t , the zero-curvature
condition takes the form Ut − Vx + [U,V ] = 0 (cf [1], for example) which can be rewritten
in the form of a Lax equation. Soliton equations and integrable models are known to possess
such a zero-curvature formulation with a connection (i.e. U and V ) depending on a parameter,
say λ (cf [1], for example).

This geometric formulation of integrable models is easily extended to generalized
geometries, in particular in the sense of noncommutative geometry, where, on a basic level,
the algebra of differential forms on a manifold is generalized to a differential calculus over
an associative algebra A (for which the algebra of smooth functions on a manifold is an
example) [2].

Recent work [3–5] shows that for many integrable models there is a zero-curvature
formulation in which the linear system appears naturally in a form which depends linearly
on the spectral parameter λ. However, translating the linear system into the form ∂χ/∂x =
U(x, t, λ) χ and ∂χ/∂t = V (x, t, λ) χ , as considered in [1], for example, one usually ends up
with a nonlinear dependence ofU and V on λ. An example in [1] for whichU and V are linear
in λ is the N-wave model (see p 309). A more important example where the connection depends
linearly on λ is provided by the self-dual Yang–Mills equations from which many integrable
models can be obtained by a reduction procedure [6]. In such cases we have D = δ − λ d
where δ and d are anticommuting linear maps satisfying d2 = 0 = δ2. They constitute what is
known as a bicomplex (and need not satisfy the Leibniz rule as in the case of a bidifferential
calculus). The linear system then reads

δχ = λ dχ. (1.1)
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The most interesting point concerning this equation is not its simplicity in the dependence
on λ, but rather the fact that expressing χ as a power series in λ leads in a very simple
way to the conserved densities of the respective model. Moreover, behind this is a general
iterative construction of δ-closed elements of a bicomplex. This is explained in more detail in
section 2, which somewhat generalizes the framework of our previous papers. In particular,
a modification of the above linear system by adding an inhomogeneous term is necessary, in
general.

Applied to chiral models, the iterative construction of ‘generalized conserved densities’
in the sense of δ-closed elements of a bicomplex is precisely the construction of non-local
conserved charges due to Brézin et al [7]. Our previous and the present work shows that
the same method applies to most of the known soliton equations and integrable models (and
perhaps to all of them). Surprisingly, in several cases the apparently nonlocal construction
leads to local conserved currents and charges, rather than nonlocal ones.

In section 3 we apply gauge transformations and dressings to some (trivial) bicomplexes.
Since we consider two separate ‘generalized covariant derivatives’ instead of one depending
on a (spectral) parameter, a gauge transformation can be applied to just one of them. Such a
dressing transformation deforms the bicomplex in a relatively simple way and the bicomplex
conditions lead to equations for the transformation map. In this way one recovers several
integrable models. Applying a gauge transformation simultaneously to both maps, d and
δ, results in an equivalence transformation of the bicomplex, of course. We present several
examples, including the nonlinear Schrödinger equation and the sine–Gordon equation and its
discrete version, as well as a Toda field theory and a corresponding discretization. Furthermore,
we briefly discuss generalizations of the self-dual Yang–Mills equations and reductions in the
bicomplex framework. Section 4 contains some conclusions.

2. Weak bicomplexes and associated linear equation

Let M = ⊕
r�0 M

r be an N0-graded linear space (over R or C) and d, δ : Mr → Mr+1,
ρ : Mr → Mr linear maps satisfying

ρ d2 = 0 δ2 = 0 δ d + ρ dδ = 0. (2.1)

Then (M, d, δ, ρ) is called a weak bicomplex. If ρ is the identity map, then (M, d, δ) is a
bicomplex. In terms of dλ = δ−λ d with a constant λ, the three bicomplex equations can then
be combined into the single condition d2

λ = 0 (for all λ).
We are interested in the case where the weak bicomplex maps depend on certain objects

(e.g. functions or operators) in such a way that the above bicomplex equations are satisfied
if these objects are solutions of some (e.g. differential or operator) equations. Of particular
interest are those cases where the bicomplex conditions become equivalent to a certain (e.g.
nonlinear partial differential) equation.

We assume that, for some s ∈ N, there is a (nonvanishing) χ(0) ∈ Ms−1 with

ρ dJ (0) = 0 where J (0) = δχ(0). (2.2)

Let us define

J (1) = dχ(0). (2.3)

Then

δJ (1) = −ρ dδ χ(0) = 0. (2.4)

If the δ-closed element J (1) is δ-exact, then

J (1) = δχ(1) (2.5)
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Figure 1. The iterative construction of δ-closed elements J (m) ∈ Ms .

with some χ(1) ∈ Ms−1. Next we define

J (2) = dχ(1). (2.6)

Then

δJ (2) = −ρ dδ χ(1) = −ρ dJ (1) = −ρ d2χ(0) = 0. (2.7)

If the δ-closed element J (2) is δ-exact, then

J (2) = δχ(2) (2.8)

with some χ(2) ∈ Ms−1. This can be iterated further and leads to a (possibly infinite) chain
(see figure 1) of elements J (m) of Ms and χ(m) ∈ Ms−1 satisfying

J (m+1) = dχ(m) = δχ(m+1). (2.9)

More precisely, the above iteration continues from the mth to the (m + 1)th level as long as
δJ (m) = 0 implies J (m) = δχ(m) with an element χ(m) ∈ Ms−1. Of course, there is no
obstruction to the iteration if Hs

δ (M) is trivial, i.e. when all δ-closed elements of Ms are δ-
exact. In general, the latter condition is too strong, however, though in several examples it can
be easily verified [3].

Introducing

χ =
∑
m�0

λm χ(m) (2.10)

with a parameter λ, the essential ingredients of the above iteration procedure are summarized
in

δ(χ − χ(0)) = λ dχ (2.11)

which we call the linear equation associated with the bicomplex†.
Applying δ to the bicomplex linear equation and using (2.1), we find

ρ dδ χ = 0. (2.12)

Hence χ has to satisfy the same condition as we put on the initial data χ(0). We may thus think
of the above iteration as a discrete process in the space of solutions of this equation.

† Independent of the choice of ρ, we are led to the same form of the linear equation (2.11). The map ρ enters via the
initial conditionρ dδ χ(0) = 0. The linear equation then implies [δ2−λ (δ d+ρ dδ)+λ2ρ d2]χ = (δ2−λ ρ dδ)χ(0) = 0.
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Now we can turn things around. Given a bicomplex, we may start with the linear
equation (2.11). Let us suppose that it admits a (non-trivial) solution χ as a (formal) power
series in the parameter λ:

χ =
N∑

m=0

λm χ(m) (2.13)

with N ∈ N ∪ {∞}. The linear equation leads to

δχ(m) = dχ(m−1) m = 1, . . . , N dχ(N) = 0 (2.14)

where the last equation has to be dropped if N = ∞. As a consequence, the J (m+1) = dχ(m)

(m = 0, . . . , N − 1) are δ-exact. Even if the cohomology Hs
δ (M) is not trivial, the solvability

of the linear equation ensures that the δ-closed J (m) appearing in the iteration are δ-exact†. This
observation somewhat generalizes the framework of our previous papers and indeed appears
to be necessary in order to cover examples such as the nonlinear Schrödinger equation (see the
following section).

A priori, the mathematics presented above has little to do with conservation laws. However,
formulating integrable models such as KdV, KP, chiral models and the like in the bicomplex
framework has demonstrated that the δ-exact J (m) (where s = 1) are directly or somewhat
indirectly related to the known conserved densities of the respective models [3–5]. This is also
confirmed by the examples treated in the following section.

The features usually attributed to soliton equations demand a high level of order and
predictability, in complete contrast with chaotic systems, which, in this sense, form the
dark side of nonlinear dynamics. Soliton systems were found to possess an infinite set of
conservation laws. This was taken as a (partial) explanation for the high order of simplicity
of their scattering behaviour. If there is an infinite chain of independent δ-exact elements in
a bicomplex associated with some (integro-differential, difference, operator) equation, this is
certainly also a property expressing a high degree of order. In this sense the above structure
should also be of interest beyond the context of integrable models.

The freedom which enters the formalism through the possible choice of a map ρ different
from the identity and also the possibility of considering s > 1 will not be explored in this work.
Hence, in the following we restrict our considerations to the simpler structure of a bicomplex
and the case where s = 1.

In the examples which we present in the following sections, the bicomplex space is always
chosen as M = M0 ⊗ �n where �n = ⊕n

r=0 �
r is the exterior algebra of a (complex) n-

dimensional vector space with a basis ξ r , r = 1, . . . , n, of �1. It is then sufficient to define
the bicomplex maps d and δ on M0 since via

d

( n∑
i1,...,ir=1

φi1...ir ξ
i1 · · · ξ ir

)
=

n∑
i1,...,ir=1

(dφi1...ir ) ξ
i1 · · · ξ ir (2.15)

(and correspondingly for δ) they extend as linear maps to the whole of M . In the case of �2

we denote the two basis elements of �1 as τ, ξ .

3. Gauge transformations and dressings of bicomplexes

Let (M, d, δ) be a bicomplex. A gauge transformation is a map of this bicomplex to another
bicomplex (M, d′, δ′) induced by an isomorphism g of M such that

d′φ = g−1d(gφ) δ′φ = g−1δ(gφ). (3.1)

† If the cohomology condition holds, then the above iterative procedure provides us with a solution of the linear
equation. Otherwise we have to show that the linear equation has a sufficiently nontrivial solution.
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Indeed, it is easily verified that d′ and δ′ satisfy the bicomplex conditions (2.1) (with ρ = id)
if d and δ satisfy them.

There are at least two simple ways to deform a bicomplex such that two of the bicomplex
conditions (2.1) remain satisfied. In both cases we leave one of the two bicomplex maps, say
δ, unchanged. We call transformations of this kind dressing transformations.

The first way is to transform d to

D̃φ = dφ + [δ, v]φ = dφ + δ(vφ) − v δφ (3.2)

where v is a linear map M → M . Then

D̃δ + δD̃ = dδ + δd = 0 (3.3)

using δ2 = 0, so that all bicomplex equations besides D̃2 = 0 are identically satisfied. The
remaining condition takes the form

dδ (vφ) − d(vδφ) − δ(vδφ) + δ(v dφ) − vδ dφ + vδ(vδφ) = 0. (3.4)

The problem is now to find d and δ such that the last equation reduces to an interesting equation
for v independent of φ.

Example (KP equation). Let M = C∞(R3) ⊗ �2. In terms of coordinates t, x, y on R
3 we

define bicomplex maps d and δ via

df = (ft − fxxx) τ + 1
2 (fy − fxx) ξ δf = 3

2 (fy + fxx) τ + fx ξ (3.5)

for f ∈ C∞(R3) = M0. The bicomplex equations (2.1) are then identically satisfied.
Deforming d to

D̃f = df + δ(vf ) − vδf

= [ft − fxxx + 3
2 (vy + vxx)f + 3vxfx] τ + 1

2 (fy − fxx + 2vxf ) ξ (3.6)

with v ∈ M0 (which, by multiplication, acts linearly on M), D̃2 = 0 becomes

vxt − 1
4vxxxx + 3vxvxx − 3

4vyy = 0 (3.7)

which is equivalent to the KP equation for the field u = −vx .

The second kind of dressing transformation is to transform d to

Dφ = G−1d(Gφ) (3.8)

where G is an isomorphism of M . Then D2φ = G−1d2(Gφ) = 0 so that all bicomplex
equations besides δD + Dδ = 0 are identically satisfied. The remaining condition results in the
following equation involving G:

δ[G−1 d(Gφ)] + G−1 d(G δφ) = 0. (3.9)

Again, the game is to find d and δ such that this reduces to an interesting equation for G
independent of φ. The following subsections present several examples.

3.1. A unifying bicomplex framework for some integrable models

Let M0 be the space of 2 × 2 matrices with entries in C∞(R3) and M = M0 ⊗ �2. In terms
of coordinates t, x, y on R

3 we define linear maps d, δ : M0 → M1 via

dφ = φt τ + φx ξ δφ = φy τ +
1

2i
(I − σ3)φ ξ (3.10)

where I is the 2 × 2 unit matrix and σ3 = diag(1,−1). The bicomplex conditions are then
identically satisfied. The δ-cohomology is not trivial. For example, elements of the form
(c(t, x), 0) ξ are δ-closed but not δ-exact.
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Now we dress d with some invertible 2 × 2 matrix G as follows:

Dφ = G−1d(Gφ) = (φt − V φ) τ + (φx − U φ) ξ (3.11)

where

U = −G−1Gx V = −G−1Gt. (3.12)

In terms of U and V , the bicomplex equation D2 = 0 reads

Ut − Vx + [U,V ] = 0 (3.13)

which is an identity in the case under consideration. The only nontrivial bicomplex equation
is δD + Dδ = 0, which takes the form

Uy − i

2
[σ3, V ] = 0. (3.14)

Example. Let

G = exp

(
i

2
(I − σ3) t

)
exp

(
i

2
σ2 u

)
σ2 =

(
0 −i
i 0

)
(3.15)

where u does not depend on t . Then

U =
(

0 −ux/2
ux/2 0

)
V =

( − sin2(u/2) sin(u/2) cos(u/2)
sin(u/2) cos(u/2) − cos2(u/2)

)
(3.16)

and (3.14) is equivalent to the sine–Gordon equation uxy = sin u.

Now we decompose V as follows:

V = i (V + + V −) σ3 (3.17)

where

σ3 V
+ σ3 = V + σ3 V

− σ3 = −V −. (3.18)

Then (3.14) becomes

V − = Uy. (3.19)

This implies σ3 Uy σ3 = −Uy , which restricts U to the following form:

U =
(

0 q

r 0

)
(3.20)

with functions q and r , up to addition of terms on the diagonal which do not depend on y. If
the latter vanish, then

σ3 U σ3 = −U. (3.21)

Using (3.19) to eliminate V − from (3.13), we obtain the two equations

V + = ∂−1
x (U 2)y (3.22)

and

iUt = −[Uxy − 2U ∂−1
x (U 2)y] σ3. (3.23)

Here ∂−1
x means integration with respect to x. In conclusion, we note the following. Let U

be of the form (3.20). Defining V via (3.17), (3.19) and (3.22), then the bicomplex equations
are satisfied iff (3.23) holds. Equation (3.23) generalizes the nonlinear Schrödinger equation.
Indeed, setting y = x (which reduces the system to two dimensions) and choosing q = ψ̄ and
r = ψ with a complex function ψ with complex conjugate ψ̄ , the equation (3.23) becomes
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equivalent to iψt = −ψxx + 2 |ψ |2 ψ (and its complex conjugate). Relations with the AKNS
formalism are rather obvious (cf [8], for example).

Suppose we have an invertible matrix, say χ̃ , the entries of which are functions of two
coordinates, say t and x. Then the identity

(χ̃xχ̃
−1)t = (χ̃t χ̃

−1)x + [χ̃t χ̃
−1, χ̃xχ̃

−1] (3.24)

implies that

tr(χ̃xχ̃
−1)t = tr(χ̃t χ̃

−1)x (3.25)

which has the form of a conservation law. However, the nontrivial task is to ensure that the
brackets on both sides contain only terms which are local† in the field we are interested in (see
also [9]).

Let us now turn to the associated linear system δχ = λDχ for a matrix χ ∈ M0, i.e.

χy = λ (χt − V χ) e−χ = i λ (χx − U χ) (3.26)

where e± = (I ± σ3)/2. The second equation implies

e+χx = e+Uχ (3.27)

and, using (3.21),

e+χx = U e−χ = iλ(U χx − U 2χ). (3.28)

On the other hand, differentiating the second equation of the linear system with respect to x

leads to

e−χx = i λ (χxx − Ux χ − U χx) (3.29)

and combining the last two equations gives

χx = i λ (χxx − (Ux + U 2) χ). (3.30)

Assuming that U is invertible (i.e. qr �= 0), (3.27) can also be written as

e−χ = e−U−1χx. (3.31)

The linear system implies e−χ(0) = 0, which is solved by χ(0) = e+. In particular, it follows
that χ is not invertible (as a formal power series in λ). Let us consider instead

χ̃ = χ + e− (3.32)

which is invertible. Using

χ = e+χ + e−χ = e+χ̃ + e−U−1χ̃x (3.33)

(3.30) becomes

χ̃x = i λ (χ̃xx − (e−U + e+UxU
−1) χ̃x − (e−Ux + e+U

2) χ̃). (3.34)

Introducing θ via

χ̃xχ̃
−1 = λ θ (3.35)

the last equation takes the form

θ = −i (e−Ux + e+U
2) + i λ (θx − (e−U + e+UxU

−1) θ) + i λ2 θ2. (3.36)

Inserting the power series expansion

θ =
∑
k�0

λk θ(k) (3.37)

† In the sense of not involving integrals of the field.



6586 A Dimakis and F Müller-Hoissen

in (3.36), we find

θ(0) = −i (e−Ux + e+U
2) θ(1) = e+UUx + e−(Uxx − U 3) (3.38)

and

θ(k) = i (θ(k−1)
x − (e−U + e+UxU

−1) θ(k−1)) + i
k−2∑
j=0

θ(j) θ (k−2−j) (3.39)

for k > 1. According to the general argument given above, the quantities

w(k) = tr θ(k) (3.40)

are conserved in a two-dimensional sense (with respect to both coordinate pairs t, x and y, x).
A more explicit form of the conservation laws is given in the addendum below. We find

w(0) = −i tr(e+U
2) = −i q r w(1) = tr(e+UUx) = q rx (3.41)

and

w(k) = i

(
w(k−1)

x − qx

q
w(k−1)

)
+ i

k−2∑
j=0

w(j) w(k−2−j). (3.42)

With y = x and q = ψ̄ , r = ψ , one recovers from the last equations the conserved densities
of the nonlinear Schrödinger equation. Choosing r = −q = ux/2 where u = u(x, y), the
w(k) reproduce the conserved densities of the sine–Gordon equation.

Addendum. The first equation of the linear system can be rewritten as follows:

χ̃yχ̃
−1 = λ (χ̃t χ̃

−1 − V (e+ + λ e−U−1θ)). (3.43)

With its help we obtain

θy = 1

λ
(χ̃xχ̃

−1)y = 1

λ
(χ̃yχ̃

−1)x + [χ̃yχ̃
−1, θ ]

= (χ̃t χ̃
−1 − V (e+ + λ e−U−1θ))x + λ[χ̃t χ̃

−1 − V (e+ + λ e−U−1θ), θ ].

(3.44)

Similarly we obtain

θt = 1

λ
(χ̃xχ̃

−1)t = 1

λ
(χ̃t χ̃

−1)x + [χ̃t χ̃
−1, θ ]

= (λ−2χ̃yχ̃
−1 + λ−1V (e+ + λ e−U−1θ))x + [λ−1χ̃yχ̃

−1 + V (e+ + λ e−U−1θ), θ ]. (3.45)

It follows that w = tr θ satisfies the conservation laws

wy = tr(χ̃t χ̃
−1 − V (e+ + λ e−U−1θ))x (3.46)

wt = tr(λ−2χ̃yχ̃
−1 + λ−1V (e+ + λ e−U−1θ))x. (3.47)

If we apply a gauge transformation with g = G−1 to the bicomplex associated with the
nonlinear Schrödinger equation (where y = x), we obtain

D′φ = φt τ + φx ξ (3.48)

δ′φ = Gδ(G−1φ) = (φx − GxG
−1φ) τ +

1

2i
(I − S)φ ξ (3.49)

where S = Gσ3G
−1. The bicomplex conditions now take the form

Sx = [GxG
−1, S] St = 2 i (GxG

−1)x. (3.50)
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The first equation leads to GxG
−1 = −(1/2)SSx using G−1Gx σ3 +σ3 G

−1Gx = 0 (cf (3.21)),
and the second takes the form

St = −i (SSx)x = −i

(
SSx − 1

2
(SSx + SxS)

)
x

= − i

2
[S, Sxx] (3.51)

where we used S2 = I . This is the Heisenberg magnet equation

�St = �S × �Sxx (3.52)

where we have set S = �S · �σ . We have thus reproduced the equivalence of the nonlinear
Schrödinger equation and the Heisenberg magnet (cf [1], for example).

3.2. Further bicomplex formulations of integrable models

3.2.1. Sine–Gordon equation again . For z : R
2 → C we define

dz = 1
2 (z̄ − z) τ + zx ξ (3.53)

δz = zt τ + 1
2 (z̄ − z) ξ (3.54)

where z̄ denotes the complex conjugate of z. Then (M = C∞(R2,C)⊗�2, d, δ) is a (trivial)
bicomplex. Deforming d to

Dz = e−iϕ/2 d(eiϕ/2z) = 1

2
(e−iϕz̄ − z) τ +

(
zx +

i

2
ϕx z

)
ξ (3.55)

δD + Dδ = 0 turns out to be equivalent to the sine–Gordon equation ϕtx = sin ϕ. The first
cohomology group of δ is not trivial. In particular, ξ is δ-closed, but not in δ(M0).

With χ(0) = 1 the linear equation δχ = λDχ consists of the two equations

χt = λ

2
(e−iϕ χ̄ − χ)

1

2
(χ̄ − χ) = λ

(
χx +

i

2
ϕx χ

)
. (3.56)

Writing χ = α + i β, the second equation of the linear system becomes

αx − 1
2 ϕx β = 0 β = −λ (βx + 1

2 ϕx α). (3.57)

Eliminating β and setting α = e−λγ with a function γ yields

γx = 1

4
ϕx

2 − λ

(
γxx − ϕxx

ϕx
γx

)
+ λ2 γx

2. (3.58)

From the first equation of the linear system we obtain

αt = λ

2
(α cosϕ − β sin ϕ − α). (3.59)

After some simple manipulations one arrives at the conservation law

(γx)t = −
(
λ

sin ϕ

ϕx
γx +

1

2
cosϕ

)
x

. (3.60)

Inserting the power series expansion forγ with respect toλ, one obtains the conserved quantities

γ (0)
x = 1

4ϕx
2 γ (1)

x = − 1
8 (ϕx

2)x . . . (3.61)

of the sine–Gordon equation. Similar calculations can be performed in the case of the following
models.
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3.2.2. Discrete sine–Gordon equation. Let M0 be the space of complex functions on an
infinite plane square lattice. We define linear maps d, δ : M0 → M1 by

(δz)S = (zE − zS) τ + a (z̄W − zS) ξ (3.62)

(dz)S = a (z̄E − zS) τ + (zW − zS) ξ (3.63)

where a subscript N, S, E or W means taking the value at the north, south, east and west points,
respectively, of a common elementary square of the lattice (cf [11] for this notation). It is
easily verified that (M = M0 ⊗ �2, d, δ) is a bicomplex. Now we deform d to

(Dz)S = e−iϕS/2(d(eiϕ/2z))S = a(e−i(ϕS+ϕE)/2z̄E − zS) τ + (e−i(ϕS−ϕW)/2zW − zS) ξ (3.64)

with a real function ϕ. Then δD + Dδ = 0 is equivalent to

ei(ϕN−ϕE)/2 − e−i(ϕS−ϕW)/2 = a2(ei(ϕN+ϕW)/2 − e−i(ϕS+ϕE)/2). (3.65)

Taking real and imaginary parts and using some trigonometry, one proves that this is equivalent
to

sin[ 1
4 (ϕN + ϕS − ϕE − ϕW)] = a2 sin[ 1

4 (ϕN + ϕS + ϕE + ϕW)] (3.66)

which is the discrete sine–Gordon equation [10].

3.2.3. Toda field theory. Let M0 be the algebra of functions on R
2 × Z which are smooth in

the first two arguments. We write fk(t, x) = f (t, x, k) for k ∈ Z. Supplied with the linear
maps defined by

δfk = (∂tfk) τ + (fk+1 − fk) ξ dfk = −(fk − fk−1) τ + (∂xfk) ξ (3.67)

M = M0 ⊗�2 becomes a bicomplex. The bicomplex conditions (2.1) are identically satisfied.
Now we dress d as follows:

Dfk = e−qk d(eqkfk) = (eqk−1−qkfk−1 − fk) τ + (∂xfk + (∂xqk)fk) ξ (3.68)

where q ∈ M0. Then δD + Dδ = 0 is equivalent to the Toda field equation

∂t∂xqk = eqk−qk+1 − eqk−1−qk . (3.69)

See also [3, 5, 12] for some related work.

3.2.4. A generalization of Hirota’s difference equation. Hirota’s difference equation is a
discretization of the Toda field theory [13]. Let M0 be the algebra of functions of n discrete
variables x1, . . . , xn and M = M0 ⊗ �n. M becomes a bicomplex with d and δ determined
by

df =
∑
i

ai (RSif − f ) ξ i δf =
∑
i

bi (Sif − f ) ξ i (3.70)

where (Sif )(x
1, . . . , xn) = f (x1, . . . , xi−1, xi + 1, xi+1, . . . , xn). R is an automorphism of

the algebra of functions commuting with Si , and ai, bi are constants. The bicomplex equations
are then identically satisfied. Now we deform d to

Df = e−q d(eqf ) =
∑
i

ai (e
RSiq−q RSif − f ) ξ i (3.71)

with a function q of the discrete variables. Then δD + Dδ = 0 yields

aibj (e
RSiSj q−Sj q − eRSiq−q) = ajbi (e

RSiSj q−Siq − eRSj q−q). (3.72)
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3.3. Remarks on self-dual Yang–Mills equations and reductions

Let A be an associative (and not necessarily commutative) algebra over R or C. Furthermore,
let M = : ⊗A Am where (:, d, δ) is a bidifferential calculus over A (cf [3]), so that d and δ

satisfy the (graded) Leibniz rule. If we apply dressings of the second kind to both generalized
exterior derivatives, we obtain a bicomplex (M,D,D) where

Dφ = dφ + Aφ Dφ = δφ + B φ (3.73)

if the bicomplex conditions

dA + A2 = 0 δB + B2 = 0 dB + δA + AB + BA = 0 (3.74)

are satisfied. The first two equations are solved, of course, withA = G−1 dG and an analogous
expression for B. Applying suitable gauge transformations, we obtain equivalent bicomplexes
(M,D′, δ) and (M, d,D′), in particular.

Let us now specialize A to the commutative algebra of smooth functions of 2n variables
xi, yi , i = 1, . . . , n, and set

df =
∑
i

∂f

∂xi
ξ i δf =

∑
i

∂f

∂yi
ξ i (3.75)

where ξ i, i = 1, . . . , n, is a basis of �n. Since B can be transformed to zero by a gauge
transformation, it is sufficient to consider (M,D, δ), which is a bicomplex iff

dA + A2 = 0 δA = 0. (3.76)

For n = 2 this is gauge equivalent to the self-dual Yang–Mills equations [3, 16]. Higher-
dimensional generalizations of the above kind with n > 2 have been considered in [3, 14].
Many examples of integrable models can be obtained from (3.73) via a reduction. This means
that one considers cases where the fields depend only on particular combinations of the variables
xi, yj and the connection 1-forms have special forms (cf [6]). Since reductions do not commute
with gauge transformations, it is necessary, however, to consider more generally the bicomplex
(M,D,D), where B is also switched on.

Example. Let the functions depend on xi , i = 1, . . . , n, only. With A = 0 we obtain

dφ = ∂iφ dxi Dφ = Biφ dxi (3.77)

and the bicomplex conditions read

∂iBj − ∂jBi = 0 BiBj − BjBi = 0. (3.78)

For m = n and assuming that there is a constant metric tensor ηij such that for Bk = (Bk
i
j ) the

tensor Bijk = ηjlBi
l
k is totally symmetric, the above equations are equivalent to the WDVV

equations [15].

4. Conclusions

By application of gauge transformations and dressings we have constructed bicomplex zero-
curvature formulations for several integrable models. The associated linear system then arises
in a form with a linear dependence on the (spectral) parameter λ and the existence of an
infinite set of conserved densities follows from the general recursive construction of δ-closed
elements in the bicomplex associated with the respective model [3]. A relation between our
bicomplex formulation and (finite-dimensional) bi-Hamiltonian systems has recently been
revealed in [17].
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The general iterative construction applies to a much wider range of (weak) bicomplexes
than those related to classical soliton equations and integrable models. In particular,
generalizations of classical integrable models to corresponding models on noncommutative
spaces are obtained in this framework by replacing the ordinary product of functions by the
Moyal ∗-product [12] (see also [18] and the references cited there).
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